Počet záznamů: 1  

Large separated sets of unit vectors in Banach spaces of continuous functions

  1. 1.
    0506888 - MÚ 2020 RIV PL eng J - Článek v odborném periodiku
    Cúth, M. - Kurka, Ondřej - Vejnar, B.
    Large separated sets of unit vectors in Banach spaces of continuous functions.
    Colloquium Mathematicum. Roč. 157, č. 2 (2019), s. 173-187. ISSN 0010-1354
    Institucionální podpora: RVO:67985840
    Klíčová slova: Banach space * nonseparable space
    Kód oboru RIV: BA - Obecná matematika
    Obor OECD: Pure mathematics
    Impakt faktor: 0.540, rok: 2018

    The paper concerns the problem of whether a nonseparable C(K) space must contain a set of unit vectors whose cardinality equals the density of C(K), and such that the distances between any two distinct vectors are always greater than . We prove that this is the case if the density is at most gamma, and that for several classes of C(K) spaces (of arbitrary density) it is even possible to find such a set which is 2-equilateral, that is, the distance between two distinct vectors is exactly 2.
    Trvalý link: http://hdl.handle.net/11104/0298018
    Název souboruStaženoVelikostKomentářVerzePřístup
    Kurka1.pdf0466.6 KBVydavatelský postprintvyžádat