Počet záznamů: 1  

Unilateral sources and sinks of an activator in reaction-diffusion systems exhibiting diffusion-driven instability

  1. 1.
    0504264 - MÚ 2020 RIV GB eng J - Článek v odborném periodiku
    Fencl, M. - Kučera, Milan
    Unilateral sources and sinks of an activator in reaction-diffusion systems exhibiting diffusion-driven instability.
    Nonlinear Analysis: Theory, Methods & Applications. Roč. 187, October (2019), s. 71-92. ISSN 0362-546X
    Institucionální podpora: RVO:67985840
    Klíčová slova: maximal eigenvalue * positively homogeneous operators * reaction–diffusion systems * unilateral terms * Turing's patterns
    Kód oboru RIV: BA - Obecná matematika
    Obor OECD: Pure mathematics
    Impakt faktor: 1.450, rok: 2018
    http://dx.doi.org/10.1016/j.na.2019.04.001

    A reaction–diffusion system exhibiting Turing's diffusion driven instability is considered. The equation for an activator is supplemented by unilateral terms of the type s − (x)u − , s + (x)u + describing sources and sinks active only if the concentration decreases below and increases above, respectively, the value of the basic spatially constant solution which is shifted to zero. We show that the domain of diffusion parameters in which spatially non-homogeneous stationary solutions can bifurcate from that constant solution is smaller than in the classical case without unilateral terms. It is a dual information to previous results stating that analogous terms in the equation for an inhibitor imply the existence of bifurcation points even in diffusion parameters for which bifurcation is excluded without unilateral sources. The case of mixed (Dirichlet–Neumann) boundary conditions as well as that of pure Neumann conditions is described.
    Trvalý link: http://hdl.handle.net/11104/0295933
    Název souboruStaženoVelikostKomentářVerzePřístup
    Kucera.pdf11.1 MBVydavatelský postprintvyžádat
     
Počet záznamů: 1