Počet záznamů: 1  

On a hyperbolic system arising in liquid crystals modeling

  1. 1.
    0488850 - MU-W 2019 RIV US eng J - Článek v odborném periodiku
    Feireisl, Eduard - Rocca, E. - Schimperna, G. - Zarnescu, A.
    On a hyperbolic system arising in liquid crystals modeling.
    Journal of Hyperbolic Differential Equations. Roč. 15, č. 1 (2018), s. 15-35. ISSN 0219-8916
    GRANT EU: European Commission(XE) 320078 - MATHEF
    Institucionální podpora: RVO:67985840
    Klíčová slova: dissipative solution * liquid crystal * weak-strong uniqueness
    Kód oboru RIV: BA - Obecná matematika
    Obor OECD: Pure mathematics
    Impakt faktor: 0.426, rok: 2018
    https://www.worldscientific.com/doi/abs/10.1142/S0219891618500029

    We consider a model of liquid crystals, based on a nonlinear hyperbolic system of differential equations, that represents an inviscid version of the model proposed by Qian and Sheng. A new concept of dissipative solution is proposed, for which a global-in-time existence theorem is shown. The dissipative solutions enjoy the following properties: (i) they exist globally in time for any finite energy initial data, (ii) dissipative solutions enjoying certain smoothness are classical solutions, (iii) a dissipative solution coincides with a strong solution originating from the same initial data as long as the latter exists.
    Trvalý link: http://hdl.handle.net/11104/0283372
    Název souboruStaženoVelikostKomentářVerzePřístup
    Feireisl2.pdf6214.3 KBVydavatelský postprintvyžádat