Počet záznamů: 1
Non-uniqueness of admissible weak solutions to the Riemann problem for the isentropic Euler equations
- 1.0488708 - MÚ 2019 RIV GB eng J - Článek v odborném periodiku
Chiodaroli, E. - Kreml, Ondřej
Non-uniqueness of admissible weak solutions to the Riemann problem for the isentropic Euler equations.
Nonlinearity. Roč. 31, č. 4 (2018), s. 1441-1460. ISSN 0951-7715. E-ISSN 1361-6544
Grant CEP: GA ČR(CZ) GJ17-01694Y
Institucionální podpora: RVO:67985840
Klíčová slova: Riemann problem * non-uniqueness * weak solutions
Obor OECD: Pure mathematics
Impakt faktor: 1.729, rok: 2018 ; AIS: 1.363, rok: 2018
Web výsledku:
http://iopscience.iop.org/article/10.1088/1361-6544/aaa10d/metaDOI: https://doi.org/10.1088/1361-6544/aaa10d
We study the Riemann problem for multidimensional compressible isentropic Euler equations. Using the framework developed in Chiodaroli et al (2015 Commun. Pure Appl. Math. 68 1157–90), and based on the techniques of De Lellis and Székelyhidi (2010 Arch. Ration. Mech. Anal. 195 225–60), we extend the results of Chiodaroli and Kreml (2014 Arch. Ration. Mech. Anal. 214 1019–49) and prove that it is possible to characterize a set of Riemann data, giving rise to a self-similar solution consisting of one admissible shock and one rarefaction wave, for which the problem also admits infinitely many admissible weak solutions.
Trvalý link: http://hdl.handle.net/11104/0283249
Počet záznamů: 1