Počet záznamů: 1  

Non-uniqueness of admissible weak solutions to the Riemann problem for the isentropic Euler equations

  1. 1.
    0488708 - MÚ 2019 RIV GB eng J - Článek v odborném periodiku
    Chiodaroli, E. - Kreml, Ondřej
    Non-uniqueness of admissible weak solutions to the Riemann problem for the isentropic Euler equations.
    Nonlinearity. Roč. 31, č. 4 (2018), s. 1441-1460. ISSN 0951-7715. E-ISSN 1361-6544
    Grant CEP: GA ČR(CZ) GJ17-01694Y
    Institucionální podpora: RVO:67985840
    Klíčová slova: Riemann problem * non-uniqueness * weak solutions
    Obor OECD: Pure mathematics
    Impakt faktor: 1.729, rok: 2018 ; AIS: 1.363, rok: 2018
    Web výsledku:
    http://iopscience.iop.org/article/10.1088/1361-6544/aaa10d/metaDOI: https://doi.org/10.1088/1361-6544/aaa10d

    We study the Riemann problem for multidimensional compressible isentropic Euler equations. Using the framework developed in Chiodaroli et al (2015 Commun. Pure Appl. Math. 68 1157–90), and based on the techniques of De Lellis and Székelyhidi (2010 Arch. Ration. Mech. Anal. 195 225–60), we extend the results of Chiodaroli and Kreml (2014 Arch. Ration. Mech. Anal. 214 1019–49) and prove that it is possible to characterize a set of Riemann data, giving rise to a self-similar solution consisting of one admissible shock and one rarefaction wave, for which the problem also admits infinitely many admissible weak solutions.
    Trvalý link: http://hdl.handle.net/11104/0283249
     
    Název souboruStaženoVelikostKomentářVerzePřístup
    Kreml.pdf71 MBVydavatelský postprintvyžádat
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.