Počet záznamů: 1  

The Stochastic Galerkin Method for Darcy Flow Problem with Log-Normal Random

  1. 1. 0482834 - UGN-S 2018 RIV SK eng J - Článek v odborném periodiku
    Beres, Michal - Domesová, Simona
    The Stochastic Galerkin Method for Darcy Flow Problem with Log-Normal Random.
    Advances in Electrical and Electronic Engineering. Roč. 15, č. 2 (2017), s. 267-279 ISSN 1336-1376
    Grant CEP: GA MŠk LQ1602
    Institucionální podpora: RVO:68145535
    Klíčová slova: Darcy flow * Gaussian random field * Karhunen-Loeve decomposition * polynomial chaos * Stochastic Galerkin method
    Kód oboru RIV: BA - Obecná matematika
    Obor OECD: Applied mathematics

    This article presents a study of the Stochastic Galerkin Method (SGM) applied to the Darcy flow problem with a log-normally distributed random material field given by a mean value and an autocovariance function. We divide the solution of the problem into two parts. The first one is the decomposition of a random field into a sum of products of a random vector and a function of spatial coordinates, this can be achieved using the Karhunen-Loeve expansion. The second part is the solution of the problem using SGM. SGM is a simple extension of the Galerkin method in which the random variables represent additional problem dimensions. For the discretization of the problem, we use a finite element basis for spatial variables and a polynomial chaos discretization for random variables. The results of SGM can be utilised for the analysis of the problem, such as the examination of the average flow, or as a tool for the Bayesian approach to inverse problems.
    Trvalý link: http://hdl.handle.net/11104/0278234
    Název souboruStaženoVelikostKomentářVerzePřístup
    UGN_0482834.pdf1956 KBAutorský postprintpovolen