Počet záznamů: 1  

Discretization error estimates in maximum norm for convergent splittings of matrices with a monotone preconditioning part

  1. 1. 0482329 - UGN-S 2018 RIV NL eng J - Článek v odborném periodiku
    Axelsson, Owe - Karátson, J.
    Discretization error estimates in maximum norm for convergent splittings of matrices with a monotone preconditioning part.
    Journal of Computational and Applied Mathematics. Roč. 210, January 2017 (2017), s. 155-164 ISSN 0377-0427
    Institucionální podpora: RVO:68145535
    Klíčová slova: finite difference method * error estimates * matrix splitting * preconditioning
    Kód oboru RIV: BA - Obecná matematika
    Obor OECD: Applied mathematics
    Impakt faktor: 1.632, rok: 2017
    http://www.sciencedirect.com/science/article/pii/S0377042716301492?via%3Dihub

    For finite difference matrices that are monotone, a discretization error estimate in maximum norm follows from the truncation errors of the discretization. It enables also discretization error estimates for derivatives of the solution. These results are extended to convergent operator splittings of the difference matrix where the major, preconditioning part is monotone but the whole operator is not necessarily monotone.
    Trvalý link: http://hdl.handle.net/11104/0277746
    Název souboruStaženoVelikostKomentářVerzePřístup
    UGN_0482329.pdf0434.7 KBAutorský postprintvyžádat