Počet záznamů: 1  

A-free rigidity and applications to the compressible Euler system

  1. 1. 0476952 - MU-W 2018 RIV DE eng J - Článek v odborném periodiku
    Chiodaroli, E. - Feireisl, Eduard - Kreml, Ondřej - Wiedemann, E.
    A-free rigidity and applications to the compressible Euler system.
    Annali di Matematica Pura ed Applicata. Roč. 196, č. 4 (2017), s. 1557-1572 ISSN 0373-3114
    Grant CEP: GA ČR GA13-00522S
    GRANT EU: European Commission(XE) 320078 - MATHEF
    Institucionální podpora: RVO:67985840
    Klíčová slova: A-free condition * compressible Euler equations * measure-valued solutions
    Kód oboru RIV: BA - Obecná matematika
    Obor OECD: Pure mathematics
    Impakt faktor: 1.066, rok: 2017
    https://link.springer.com/article/10.1007%2Fs10231-016-0629-9

    Can every measure-valued solution to the compressible Euler equations be approximated by a sequence of weak solutions? We prove that the answer is negative: generalizing a well-known rigidity result of Ball and James to a more general situation, we construct an explicit measure-valued solution for the compressible Euler equations which cannot be generated by a sequence of distributional solutions. We also give an abstract necessary condition for measure-valued solutions to be generated by weak solutions, relying on work of Fonseca and Müller. While a priori it is not unexpected that not every measure-valued solution arises from a sequence of weak solutions, it is noteworthy that this observation in the compressible case is in contrast to the incompressible situation, where every measure-valued solution can be approximated by weak solutions, as shown by Székelyhidi and Wiedemann.
    Trvalý link: http://hdl.handle.net/11104/0273355
    Název souboruStaženoVelikostKomentářVerzePřístup
    Feireisl6.pdf2522.1 KBVydavatelský postprintvyžádat