Počet záznamů: 1  

Eigenvalue inequalities for the Laplacian with mixed boundary conditions

  1. 1.
    0475670 - ÚJF 2018 RIV US eng J - Článek v odborném periodiku
    Lotoreichik, Vladimir - Rohleder, J.
    Eigenvalue inequalities for the Laplacian with mixed boundary conditions.
    Journal of Differential Equations. Roč. 263, č. 1 (2017), s. 491-508. ISSN 0022-0396
    Grant CEP: GA ČR(CZ) GA14-06818S
    Institucionální podpora: RVO:61389005
    Klíčová slova: Laplace operator * mixed boundary conditions * eigenvalue inequality * polyhedral domain * Lipschitz domain
    Kód oboru RIV: BE - Teoretická fyzika
    Obor OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
    Impakt faktor: 1.782, rok: 2017

    nequalities for the eigenvalues of the (negative) Laplacian subject to mixed boundary conditions on polyhedral and more general bounded domains are established. The eigenvalues subject to a Dirichlet boundary condition on a part of the boundary and a Neumann boundary condition on the remainder of the boundary are estimated in terms of either Dirichlet or Neumann eigenvalues. The results complement several classical inequalities between Dirichlet and Neumann eigenvalues due to Polya, Payne, Levine and Weinberger, Friedlander, and others.
    Trvalý link: http://hdl.handle.net/11104/0272327