Počet záznamů: 1  

Clickable antifouling polymer brushes for polymer pen lithography

  1. 1. 0473863 - UMCH-V 2018 RIV US eng J - Článek v odborném periodiku
    Bog, U. - de los Santos Pereira, Andres - Mueller, S. L. - Havenridge, S. - Parrillo, Viviana - Bruns, M. - Holmes, A. E. - Rodriguez-Emmenegger, C. - Fuchs, H. - Hirtz, M.
    Clickable antifouling polymer brushes for polymer pen lithography.
    ACS Applied Materials and Interfaces. Roč. 9, č. 13 (2017), s. 12109-12117. ISSN 1944-8244
    Grant CEP: GA ČR(CZ) GJ15-09368Y
    Institucionální podpora: RVO:61389013
    Klíčová slova: antifouling * biofunctional interfaces * polymer brushes
    Kód oboru RIV: CD - Makromolekulární chemie
    Obor OECD: Polymer science
    Impakt faktor: 8.097, rok: 2017

    Protein-repellent reactive surfaces that promote localized specific binding are highly desirable for applications in the biomedical field. Nonspecific adhesion will compromise the function of bioactive surfaces, leading to ambiguous results of binding assays and negating the binding specificity of patterned cell-adhesive motives. Localized specific binding is often achieved by attaching a linker to the surface, and the other side of the linker is used to bind specifically to a desired functional agent, as e.g. proteins, antibodies, and fluorophores, depending on the function required by the application. We present a protein-repellent polymer brush enabling highly specific covalent surface immobilization of biorecognition elements by strain-promoted alkyne–azide cycloaddition click chemistry for selective protein adhesion. The protein-repellent polymer brush is functionalized by highly localized molecular binding sites in the low micrometer range using polymer pen lithography (PPL). Because of the massive parallelization of writing pens, the tunable PPL printed patterns can span over square centimeter areas. The selective binding of the protein streptavidin to these surface sites is demonstrated while the remaining polymer brush surface is resisting nonspecific adsorption without any prior blocking by bovine serum albumin (BSA). In contrast to the widely used BSA blocking, the reactive polymer brushes are able to significantly reduce nonspecific protein adsorption, which is the cause of biofouling. This was achieved for solutions of single proteins as well as complex biological fluids. The remarkable fouling resistance of the polymer brushes has the potential to improve the multiplexing capabilities of protein probes and therefore impact biomedical research and applications.
    Trvalý link: http://hdl.handle.net/11104/0271212