Počet záznamů: 1  

B-spline based finite element method in one-dimensional discontinuous elastic wave propagation

  1. 1.
    0473856 - ÚT 2018 RIV US eng J - Článek v odborném periodiku
    Kolman, Radek - Okrouhlík, Miloslav - Berezovski, A. - Gabriel, Dušan - Kopačka, Ján - Plešek, Jiří
    B-spline based finite element method in one-dimensional discontinuous elastic wave propagation.
    Applied Mathematical Modelling. Roč. 46, June (2017), s. 382-395. ISSN 0307-904X. E-ISSN 1872-8480
    Grant CEP: GA ČR(CZ) GAP101/12/2315; GA MŠk(CZ) EF15_003/0000493
    Grant ostatní: AV ČR(CZ) DAAD-16-12; AV ČR(CZ) ETA-15-03
    Program: Bilaterální spolupráce; Bilaterální spolupráce
    Institucionální podpora: RVO:61388998
    Klíčová slova: discontinuous elastic wave propagation * B-spline finite element method * isogeometric analysis * implicit and explicit time integration * dispersion * spurious oscillations
    Obor OECD: Acoustics
    Impakt faktor: 2.617, rok: 2017
    http://www.sciencedirect.com/science/article/pii/S0307904X17300835

    The B-spline variant of the finite element method (FEM) is tested in one-dimensional discontinuous elastic wave propagation. The B-spline based FEM (called Isogeometric analysis IGA) uses spline functions as testing and shape functions in the Galerkin continuous content. Here, the accuracy of stress distribution and spurious oscillations of the B-spline based FEM are studied in numerical modeling of one-dimensional propagation of stress discontinuities in a bar, where the analytical solution is known. For time integration, the Newmark method, implicit form of the generalized-α method, the central difference method and the predictor/multi-corrector method are tested and compared. The use of lumped and consistent mass matrices in explicit time integration is discussed. Due to accuracy, the consistent mass matrix is preferred in explicit time integration in IGA.
    Trvalý link: http://hdl.handle.net/11104/0272861

     
     
Počet záznamů: 1