Počet záznamů: 1  

Ultrafine-grained Al composites reinforced with in-situ Al3Ti filaments

  1. 1. 0472679 - UFM-A 2017 RIV CH eng J - Článek v odborném periodiku
    Krizik, P. - Balog, M. - Nosko, M. - Riglos, M. V. C. - Dvořák, Jiří - Bajana, O.
    Ultrafine-grained Al composites reinforced with in-situ Al3Ti filaments.
    Materials Science and Engineering A-Structural materials. Roč. 657, MAR (2016), s. 6-14 ISSN 0921-5093
    Grant CEP: GA MŠk(CZ) ED1.1.00/02.0068
    Institucionální podpora: RVO:68081723
    Klíčová slova: Aluminum * Filament * In-situ metal matrix composite * Mechanical properties * Microstructure * Ultrafine-grained
    Kód oboru RIV: BM - Fyzika pevných látek a magnetismus
    Impakt faktor: 3.094, rok: 2016

    Ultrafine-grained (UFG) Al matrix composites reinforced with 15 and 30 vol% in-situ Al3Ti filaments were fabricated by extrusion of Al-Ti powder mixtures followed by solid-state reactive diffusion. Fine Al powder particles (1.3 mu m) heavily deformed the coarser Ti particles (24.5 mu m) into filaments during extrusion. Upon a subsequent operation of hot isostatic pressing (HIP), the micrometric Al3Ti filaments elongated along the extrusion direction and formed in situ in the UFG Al matrix. Fabricated composites are free of pores and voids with perfect bonding created at the Al-Al3Ti interfaces. In parallel, a small portion (2.4 vol%) of nanoscale gamma-Al2O3 particles, which originate from native amorphous films on fine Al powders, formed in situ and were homogenously dispersed in the Al matrix. The microstructures of as extruded and after HIP composites were analyzed by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS) and electron back-scattered diffraction (EBSD). Owing to the presence of nanometric gamma-Al2O3 particles with Al high angle grain boundaries (HAGBs), the UFG Al matrix remained stable even after HIP at 600 degrees C for 9 h. The mechanical properties and creep performance of composites at testing temperatures of up to 600 degrees C were systematically studied. The Al-Al3Ti composites exhibited a combination of increased strength and Young's modulus in addition to excellent creep performance and structural stability, which indicates that the studied composites are potential structural materials capable of service at elevated temperatures.
    Trvalý link: http://hdl.handle.net/11104/0270074