Počet záznamů: 1  

On resonances and bound states of Smilansky Hamiltonian

  1. 1. 0466593 - UJF-V 2017 RIV RU eng J - Článek v odborném periodiku
    Exner, Pavel - Lotoreichik, Vladimir - Tater, Miloš
    On resonances and bound states of Smilansky Hamiltonian.
    Nanosystems: Physics, Chemistry, Mathematics. Roč. 7, č. 5 (2016), s. 789-802 ISSN 2220-8054
    Grant CEP: GA ČR(CZ) GA14-06818S
    Institucionální podpora: RVO:61389005
    Klíčová slova: Smilansky Hamiltonian * resonances * resonance free region * weak coupling asymptotics * Riemann surface * bound states
    Kód oboru RIV: BE - Teoretická fyzika

    We consider the self-adjoint Smilansky Hamiltonian H epsilon in L-2(R-2) associated with the formal differential expression -partial derivative(2)(x) - 1/2 (partial derivative(2)(y) + y(2)) - root 2 epsilon y delta(x) in the sub-critical regime, epsilon is an element of (0, 1). We demonstrate the existence of resonances for H-epsilon on a countable subfamily of sheets of the underlying Riemann surface whose distance from the physical sheet is finite. On such sheets, we find resonance free regions and characterize resonances for small epsilon > 0. In addition, we refine the previously known results on the bound states of H " in the weak coupling regime (epsilon -> 0+). In the proofs we use Birman-Schwinger principle for H-epsilon, elements of spectral theory for Jacobi matrices, and the analytic implicit function theorem.
    Trvalý link: http://hdl.handle.net/11104/0264857