tau((EP))) the observability status of operators Q(t) is guaranteed by their self-adjoint nature with respect to an ad hoc Hilbert-space metric Theta(t) not equal I. (4) In adiabatic approximation the passage of the Universe through its t = tau((EP)) singularity is interpreted as a quantum phase transition between the preceding and the present Eon."> tau((EP))) the observability status of operators Q(t) is guaranteed by their self-adjoint nature with respect to an ad hoc Hilbert-space metric Theta(t) not equal I. (4) In adiabatic approximation the passage of the Universe through its t = tau((EP)) singularity is interpreted as a quantum phase transition between the preceding and the present Eon."> Quantization of Big Bang in Crypto-Hermitian Heisenberg Picture
Počet záznamů: 1  

Quantization of Big Bang in Crypto-Hermitian Heisenberg Picture

  1. 1.
    0466561 - ÚJF 2017 RIV DE eng C - Konferenční příspěvek (zahraniční konf.)
    Znojil, Miloslav
    Quantization of Big Bang in Crypto-Hermitian Heisenberg Picture.
    Springer Proceedings in Physics. Vol. 184. Berlin: Springer-Verlag, 2016, s. 383-399. ISBN 978-3-319-31354-2.
    [15th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics (PHHQP). Palermo (IT), 18.05.2015-23.05.2015]
    Institucionální podpora: RVO:61389005
    Klíčová slova: big bang * Hilbert space * operators
    Kód oboru RIV: BE - Teoretická fyzika

    A background-independent quantization of Universe near its Big Bang singularity is considered. Several conceptual issues are addressed in Heisenberg picture. (1) The observable spatial-geometry non-covariant characteristics of an empty-space expanding Universe are sampled by (quantized) distances Q = Q(t) between space-attached observers. (2) In Q(t) one of the Kato's exceptional-point times t = tau((EP)) is postulated real-valued. At such an instant the widely accepted "Big Bounce" regularization of the Big Bang singularity gets replaced by the full-fledged quantum degeneracy. Operators Q(tau((EP))) acquire a non-diagonalizable Jordan-block structure. (3) During our "Eon" (i.e., at all t > tau((EP))) the observability status of operators Q(t) is guaranteed by their self-adjoint nature with respect to an ad hoc Hilbert-space metric Theta(t) not equal I. (4) In adiabatic approximation the passage of the Universe through its t = tau((EP)) singularity is interpreted as a quantum phase transition between the preceding and the present Eon.
    Trvalý link: http://hdl.handle.net/11104/0264833

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.