Počet záznamů: 1  

Partitioned Alternating Least Squares Technique for Canonical Polyadic Tensor Decomposition

  1. 1.
    0460710 - UTIA-B 2017 RIV US eng J - Článek v odborném periodiku
    Tichavský, Petr - Phan, A. H. - Cichocki, A.
    Partitioned Alternating Least Squares Technique for Canonical Polyadic Tensor Decomposition.
    IEEE Signal Processing Letters. Roč. 23, č. 7 (2016), s. 993-997. ISSN 1070-9908
    Grant CEP: GA ČR(CZ) GA14-13713S
    Institucionální podpora: RVO:67985556
    Klíčová slova: canonical polyadic decomposition * PARAFAC * tensor decomposition
    Kód oboru RIV: BB - Aplikovaná statistika, operační výzkum
    Impakt faktor: 2.528, rok: 2016
    http://library.utia.cas.cz/separaty/2016/SI/tichavsky-0460710.pdf

    Canonical polyadic decomposition (CPD), also known as parallel factor analysis, is a representation of a given tensor as a sum of rank-one components. Traditional method for accomplishing CPD is the alternating least squares (ALS) algorithm. Convergence of ALS is known to be slow, especially when some factor matrices of the tensor contain nearly collinear columns. We propose a novel variant of this technique, in which the factor matrices are partitioned into blocks, and each iteration jointly updates blocks of different factor matrices. Each partial optimization is quadratic and can be done in closed form. The algorithm alternates between different random partitionings of the matrices. As a result, a faster convergence is achieved. Another improvement can be obtained when the method is combined with the enhanced line search of Rajih et al. Complexity per iteration is between those of the ALS and the Levenberg–Marquardt (damped Gauss–Newton) method.
    Trvalý link: http://hdl.handle.net/11104/0261531