Počet záznamů: 1  

Lack of Phosphatidylglycerol Inhibits Chlorophyll Biosynthesis at Multiple Sites and Limits Chlorophyllide Reutilization in Synechocystis sp Strain PCC 6803

  1. 1. 0454042 - MBU-M 2016 RIV US eng J - Článek v odborném periodiku
    Kopečná, Jana - Pilný, Jan - Krynická, Vendula - Tomčala, Aleš - Kis, M. - Gombos, Z. - Komenda, Josef - Sobotka, Roman
    Lack of Phosphatidylglycerol Inhibits Chlorophyll Biosynthesis at Multiple Sites and Limits Chlorophyllide Reutilization in Synechocystis sp Strain PCC 6803.
    Plant Physiology. Roč. 169, č. 2 (2015), s. 1307-1317. ISSN 0032-0889
    Grant CEP: GA MŠk LO1416; GA MŠk EE2.3.30.0059; GA ČR GBP501/12/G055
    Institucionální podpora: RVO:61388971 ; RVO:60077344
    Klíčová slova: II REACTION-CENTER * PHOTOSYSTEM-II * SP PCC-6803
    Kód oboru RIV: CE - Biochemie
    Impakt faktor: 6.280, rok: 2015

    The negatively charged lipid phosphatidylglycerol (PG) constitutes up to 10% of total lipids in photosynthetic membranes, and its deprivation in cyanobacteria is accompanied by chlorophyll (Chl) depletion. Indeed, radioactive labeling of the PG-depleted Delta pgsA mutant of Synechocystis sp. strain PCC 6803, which is not able to synthesize PG, proved the inhibition of Chl biosynthesis caused by restriction on the formation of 5-aminolevulinic acid and protochlorophyllide. Although the mutant accumulated chlorophyllide, the last Chl precursor, we showed that it originated from dephytylation of existing Chl and not from the block in the Chl biosynthesis. The lack of de novo-produced Chl under PG depletion was accompanied by a significantly weakened biosynthesis of both monomeric and trimeric photosystem I (PSI) complexes, although the decrease in cellular content was manifested only for the trimeric form. However, our analysis of DpgsA mutant, which lacked trimeric PSI because of the absence of the PsaL subunit, suggested that the virtual stability of monomeric PSI is a result of disintegration of PSI trimers. Interestingly, the loss of trimeric PSI was accompanied by accumulation of monomeric PSI associated with the newly synthesized CP43 subunit of photosystem II. We conclude that the absence of PG results in the inhibition of Chl biosynthetic pathway, which impairs synthesis of PSI, despite the accumulation of chlorophyllide released from the degraded Chl proteins. Based on the knowledge about the role of PG in prokaryotes, we hypothesize that the synthesis of Chl and PSI complexes are colocated in a membrane microdomain requiring PG for integrity.
    Trvalý link: http://hdl.handle.net/11104/0254740