Počet záznamů: 1  

Biooxidation of 2-phenylethanol to phenylacetic acid by whole-cell Gluconobacter oxydans biocatalyst immobilized in polyelectrolyte complex capsules

  1. 1.
    0446563 - ÚPT 2016 RIV GB eng J - Článek v odborném periodiku
    Bertóková, A. - Vikartovská, A. - Bučko, M. - Gemeiner, P. - Tkáč, J. - Chorvát, D. - Štefuca, V. - Neděla, Vilém
    Biooxidation of 2-phenylethanol to phenylacetic acid by whole-cell Gluconobacter oxydans biocatalyst immobilized in polyelectrolyte complex capsules.
    Biocatalysis and Biotransformation. Roč. 33, č. 2 (2015), s. 111-120. ISSN 1024-2422
    Grant CEP: GA ČR(CZ) GA14-22777S
    Institucionální podpora: RVO:68081731
    Klíčová slova: Gluconobacter oxydans * natural flavors * phenylacetic acid * immobilized whole-cell biocatalyst * polyelectrolyte complex capsules * environmental scanning electron microscopy
    Kód oboru RIV: JA - Elektronika a optoelektronika, elektrotechnika
    Impakt faktor: 0.892, rok: 2015

    A high-performance biocatalyst in the form of encapsulated cells of Gluconobacter oxydans have been developed for production of phenylacetic acid (PAA) as a natural flavor component. Polyelectrolyte complex (PEC) capsules consisting of sodium alginate, cellulose sulfate, poly(methylene-co-guanidine), CaCl2, and NaCl were used for highly controlled and mild encapsulation of cells. Utilization of encapsulated G. oxydans cells was a significant improvement on existing data on operational stability of cells and cumulative product concentration during biocatalytic production of PAA from 2-phenylethanol. Concerning operational stability, encapsulated cells were active over 12 cycles with a high biotransformation rate, while free cells were inactive after 7 cycles of use. The biocatalytic properties of encapsulated G. oxydans were tested in a bubble column reactor over 7 days with a final cumulative product concentration of 25 g/L. High cell viability (90%) was observed within PEC capsules by confocal laser scanning microscopy, performed before and after repetitive PAA production in the bubble column reactor. The surface microstructure of fully hydrated capsules with and without G. oxydans cells was investigated and compared using an environmental scanning electron microscope.
    Trvalý link: http://hdl.handle.net/11104/0248547
     
Počet záznamů: 1