Počet záznamů: 1  

An interpolation problem for completely positive maps on matrix algebras: solvability and parametrization

  1. 1.
    0440874 - MU-W 2015 RIV GB eng J - Článek v odborném periodiku
    Ambrozie, Calin-Grigore - Gheondea, A.
    An interpolation problem for completely positive maps on matrix algebras: solvability and parametrization.
    Linear & Multilinear Algebra. Roč. 63, č. 4 (2015), s. 826-851. ISSN 0308-1087
    Grant CEP: GA AV ČR IAA100190903
    Institucionální podpora: RVO:67985840
    Klíčová slova: Choi matrix * completely positive * density matrix
    Kód oboru RIV: BA - Obecná matematika
    Impakt faktor: 0.761, rok: 2015
    http://www.tandfonline.com/doi/abs/10.1080/03081087.2014.903253

    We present certain existence criteria and parameterizations for an interpolation problem for completely positive maps that take given matrices from a finite set into prescribed matrices. Our approach uses density matrices associated to linear functionals on -subspaces of matrices, inspired by the Smith-Ward linear functional and Arveson's Hahn-Banach Type Theorem. A necessary and sufficient condition for the existence of solutions and a parametrization of the set of all solutions of the interpolation problem in terms of a closed and convex set of an affine space are obtained. Other linear affine restrictions, like trace preserving, can be included as well, hence covering applications to quantum channels that yield certain quantum states at prescribed quantum states. We also perform a careful investigation on the intricate relation between the positivity of the density matrix and the positivity of the corresponding linear functional.
    Trvalý link: http://hdl.handle.net/11104/0243974
    Název souboruStaženoVelikostKomentářVerzePřístup
    Ambrozie.pdf1391.5 KBVydavatelský postprintvyžádat