Počet záznamů: 1  

On parameterization of heat conduction in coupled soil water and heat flow modelling

  1. 1.
    0385805 - ÚH 2013 RIV CZ eng J - Článek v odborném periodiku
    Votrubová, J. - Dohnal, M. - Vogel, T. - Tesař, Miroslav
    On parameterization of heat conduction in coupled soil water and heat flow modelling.
    Soil & Water Research. Roč. 7, č. 4 (2012), s. 125-137. ISSN 1801-5395. E-ISSN 1805-9384
    Grant CEP: GA ČR GA205/08/1174
    Výzkumný záměr: CEZ:AV0Z20600510
    Klíčová slova: advective heat flux * dual-permeability model * soil heat transport * soil thermal conductivity * surface energy balance
    Kód oboru RIV: DA - Hydrologie a limnologie
    Impakt faktor: 0.333, rok: 2012

    Soil water and heat transport plays an important role in various hydrologic, agricultural, and industrial applications. Accordingly, an increasing attention is paid to relevant simulation models. In the present study, soil thermal conditions at a mountain meadow during the vegetation season were simulated. A dual-continuum model of coupled water and heat transport was employed to account for preferential flow effects. Data collected at an experimental site in the Šumava Mountains, southern Bohemia, during the vegetation season 2009 were employed. Soil hydraulic properties (retention curve and hydraulic conductivity) determined by independent soil tests were used. Unavailable hydraulic parameters were adjusted to obtain satisfactory hydraulic model performance. Soil thermal properties were estimated based on values found in literature without further optimization. Three different approaches were used to approximate the soil thermal conductivity function, λ(θ): (i) relationships provided by Chung and Horton (ii) linear estimates as described by Loukili, Woodbury and Snelgrove, (iii) methodology proposed by Côté and Konrad. The simulated thermal conditions were compared to those observed. The impact of different soil thermal conductivity approximations on the heat transport simulation results was analysed. The differences between the simulation results in terms of the soil temperature were small. Regarding the surface soil heat flux, these differences became substantial. More realistic simulations were obtained using λ(θ) estimates based on the soil texture and composition. The differences between these two, related to neglecting vs. considering λ(θ) non-linearity, were found negligible.
    Trvalý link: http://hdl.handle.net/11104/0007489

    Název souboruStaženoVelikostKomentářVerzePřístup
    Votrubová_Dohnal_Vogel_Tesař_On parameterization of heat conduction_2012.pdf01.5 MBAutorský preprintvyžádat
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.