Počet záznamů: 1
Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome
- 1.0384241 - ÚEB 2013 RIV GB eng J - Článek v odborném periodiku
Novák, Ondřej - Hényková, Eva - Sairanen, I. - Kowalczyk, M. - Pospíšil, Tomáš - Ljung, K.
Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome.
Plant Journal. Roč. 72, č. 3 (2012), s. 523-536. ISSN 0960-7412. E-ISSN 1365-313X
Grant CEP: GA AV ČR KAN200380801
Grant ostatní: GA MŠk(CZ) ED0007/01/01
Program: ED
Výzkumný záměr: CEZ:AV0Z50380511
Klíčová slova: indole-3-acetic acid * auxin * biosynthesis
Kód oboru RIV: EC - Imunologie
Impakt faktor: 6.582, rok: 2012 ; AIS: 2.474, rok: 2012
DOI: https://doi.org/10.1111/j.1365-313X.2012.05085.x
The plant hormone auxin is believed to influence almost every aspect of plant growth and development. Auxin transport, biosynthesis and degradation combine to form gradients of the hormone that influence a range of key developmental and environmental response processes. There is abundant genetic evidence for the existence of multiple pathways for auxin biosynthesis and degradation. The complexity of these pathways makes it difficult to obtain a clear picture of the relative importance of specific metabolic pathways during development. We have developed a sensitive mass spectrometry-based method to simultaneously profile the majority of known auxin precursors and conjugates/catabolites in small amounts of Arabidopsis tissue. The method includes a new derivatization technique for quantification of the most labile of the auxin precursors. We validated the method by profiling the auxin metabolome in root and shoot tissues from various Arabidopsis thaliana ecotypes and auxin over-producing mutant lines. Substantial differences were shown in metabolite patterns between the lines and tissues. We also found differences of several orders of magnitude in the abundance of auxin metabolites, potentially indicating the relative importance of these compounds in the maintenance of auxin levels and activity. The method that we have established will enable researchers to obtain a better understanding of the dynamics of auxin metabolism and activity during plant growth and development.
Trvalý link: http://hdl.handle.net/11104/0213951
Název souboru Staženo Velikost Komentář Verze Přístup 2012_Novak_PLANT JOURNAL_523.pdf 3 595.8 KB Jiná povolen
Počet záznamů: 1