Počet záznamů: 1  

Graded properties of unary and binary fuzzy connectives

  1. 1.
    0384236 - ÚI 2013 RIV NL eng J - Článek v odborném periodiku
    Běhounek, Libor
    Graded properties of unary and binary fuzzy connectives.
    Fuzzy Sets and Systems. Roč. 202, 1 September (2012), s. 1-41. ISSN 0165-0114. E-ISSN 1872-6801
    Grant CEP: GA ČR GPP103/10/P234
    Grant ostatní: WWTF(AT) MA07-016
    Výzkumný záměr: CEZ:AV0Z10300504
    Klíčová slova: fuzzy connectives * graded properties * Fuzzy Class Theory * logic-based fuzzy mathematics * defects of mathematical properties
    Kód oboru RIV: BA - Obecná matematika
    Impakt faktor: 1.749, rok: 2012

    The paper studies basic graded properties of unary and binary fuzzy connectives, i.e., unary and binary operations on the set of truth degrees of a background fuzzy logic extending the logic MTL of left-continuous t-norms. The properties studied in this paper are graded generalizations of monotony, Lipschitz continuity, null and unit elements, idempotence, commutativity, and associativity. The paper elaborates the initial study presented in previous papers and focuses mainly on parameterization of graded properties by conjunction-multiplicities of subformulae in the defining formulae, preservation of graded properties under compositions and slight variations of fuzzy connectives, the values of graded properties for basic connectives of the ground logic, and the dependence of the values on the ground logic. The results are proved in the formal framework of higher-order fuzzy logic MTL, also known as Fuzzy Class Theory (FCT). General theorems provable in FCT are illustrated on several semantic examples.
    Trvalý link: http://hdl.handle.net/11104/0213947

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.