Počet záznamů: 1  

Stochastic Equations for Simple Discrete Models of Epitaxial Growth

  1. 1. 0166356 - UCHP-M 20020040 RIV US eng J - Článek v odborném periodiku
    Předota, Milan - Kotrla, Miroslav
    Stochastic Equations for Simple Discrete Models of Epitaxial Growth.
    Physical Review. E. Roč. 54, č. 4 (1996), s. 3933-3942 ISSN 1063-651X
    Výzkumný záměr: CEZ:AV0Z4072921
    Klíčová slova: stochastic * epitaxial * growth
    Kód oboru RIV: CF - Fyzikální chemie a teoretická chemie
    Impakt faktor: 2.149, rok: 1996

    We derive continuous stochastic equations governing the asymptotic behavior of growth from a master equation for discrete growth models with local relaxation. We consider several simple models of epitaxial growth (the Family, the Wolf-Villain, and the Das SarmaůTamborenea models and their modifications). In 111 dimensions, we derive, for each model, the corresponding Langevin equation and identify leading terms that determine the universality class. Our results for models with local relaxation are in agreement with recent computer simulations. The applicability of the method in 211 dimensions is demonstrated in the case of the Family model. Problems of the procedure, in particular regularization in the continuous limit, are discussed.
    Trvalý link: http://hdl.handle.net/11104/0063484