Počet záznamů: 1  

Dimensionality Reduction and Classification using the Distribution Mapping Exponent

  1. 1.
    0103317 - UIVT-O 20040058 RIV BE eng C - Konferenční příspěvek (zahraniční konf.)
    Jiřina, Marcel
    Dimensionality Reduction and Classification using the Distribution Mapping Exponent.
    [Redukce dimensionality a klasifikace s použitím exponentu mapovací funkce rozdělení.]
    ESANN'2004. Evere: dside, 2004 - (Verleysen, M.), s. 169-174. ISBN 2-930307-04-8.
    [ESANN'2004. European Symposium on Artificial Neural Networks /12./. Bruges (BE), 28.04.2004-30.04.2004]
    Grant CEP: GA MŠk LN00B096
    Klíčová slova: multivariate data distribution * distribution-mapping exponent * probability distribution mapping function * classification
    Kód oboru RIV: BA - Obecná matematika

    Probability distribution mapping function, which maps multivariate data distribution to the function of one variable, is introduced. Distribution-mapping exponent (DME) is something like effective dimensionality of multidimensional space. The method for classification of multivariate data is based on the local estimate of distribution mapping exponent for each point. Distances of all points of a given class of the training set from a given (unknown) point are searched and it is shown that the sum of reciprocals of the DME-th power of these distances can be used as probability density estimate. The classification quality was tested and compared with other methods using multivariate data from UCI Machine Learning Repository. The method has no tuning parameters.

    Zavádí se mapovací funkce rozdělení, která zobrazuje rozdělení mnohorozměrných dat na funkci jedné proměnné. Exponent mapovací funkce rozdělení (DME) je něco jako efektivní dimensionalita mnohorozměrného prostoru. Metoda pro klasifikaci mohorozměrných dat je založena na lokálním odhadu tohoto exponentu. Vyhledávají se vzdálenosti všech bodů dané třídy z trénovací množiny od daného bodu (neznámé třídy) a ukazuje se, že součet převrácených hodnot umocněných na DME lze použít pro odhad hustotu rozdělení. Kvalita klasifikace byla testována a porovnána s jinými metodami na mnohorozměrných datech z UCI MLR. Metoda nemá žádné nastavovací parametry.
    Trvalý link: http://hdl.handle.net/11104/0010628

     
    Název souboruStaženoVelikostKomentářVerzePřístup
    0103317.pdf0598.1 KBAutorský preprintpovolen
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.